Авиация Второй мировой
На главную   Поиск на сайте
 
Приборы на самолете Оборудование Оглавление

ГЛАВА ДЕСЯТАЯ

АВТОПИЛОТ

§ 57. Назначение автопилота и его принцип работы.

Назначение. Работа летчика по управлению самолетом при прямолинейном и горизонтальном полете сводится к сохранению курса и постоянного положения продольной и поперечной осей самолета по отношению к горизонту.

С развитием авиации увеличивалось время пребывания самолета в воздухе, удлинялись расстояния, которые самолет пролетал без посадки и, следовательно, без отдыха пилота. Появилась необходимость летать в любой метеорологической обстановке, часто без видимости земных ориентиров и горизонта — ночью или в тумане. Такой полет называется слепым полетом, ведется только по показаниям приборов и требует от летчика большого внимания и напряжения.

Для того чтобы разгрузить летчика от работы по управлению самолетом при горизонтальном и прямолинейном полете, применяют специальные автоматы, называемые автопилотами.

   Стабилизация самолета вокруг главных осей устойчивости. Главными осями устойчивости самолета называются три взаимно перпендикулярные оси, пересекающиеся, в центре тяжести самолета: XX — ось поперечной устойчивости; YY — ось курсовой устойчивости; ZZ — ось продольной устойчивости (см. фиг. 1).

Самолет в полете может совершать колебания относительно всех трех осей одновременно.

Для того чтобы самолет летел без поперечных кренов, необходимо иметь механизм, предотвращающий наклоны самолета вокруг оси XX, т. е. обеспечивающий поперечную стабилизацию. Для сохранения неизменной высоты полета и предотвращения снижения или подъема самолета нужна продольная стабилизация, препятствующая вращению самолета вокруг оси ZZ. Наконец, для сохранения прямолинейности полета и неизменного курса самолета нужно иметь курсовую стабилизацию, препятствующую вращению самолета вокруг оси YY.

Нормально автопилот обеспечивает все три стабилизации. Имеются автоматы, которые стабилизируют лишь полет по курсу; они называются автоматами курса.

В качестве чувствительного элемента в большинстве современных автопилотов применяется гироскоп. Чаще всего автопилот имеет два гироскопа: один обеспечивает курсовую стабилизацию, а другой — поперечную и продольную. В описываемом ниже автопилоте АП-42 для автоматического управления использованы авиагоризонт и гирополукомпас, которые через дополнительные агрегаты воздействуют на рули самолета.

Для приведения автопилота в действие необходима энергия, которая берется от того или иного источника питания. В зависимости от рода питания автопилоты можно разделить на пневмогидравлические и электрические.

Описываемый ниже автопилот АП-42 принадлежит к типу пневмогидравлических автопилотов. Чувствительная часть этого автопилота пневматическая, она может работать как на вакууме, так и на давлении и управляет гидравлической силовой системой.

Чувствительный элемент автопилота — гироскоп — управляет рулями самолета с помощью особого пневматического устройства, воздействующего через золотники на гидравлическую рулевую машинку.

Устройство и работа всех трех стабилизации основаны на одном и том же принципе, поэтому дальнейшее изложение ведется применительно к одной из стабилизации — курсовой.

Фиг. 355. Простейший автомат курса.

Простейший автомат курса. Рулевая машинка автомата курса (фиг. 355,а) представляет собой цилиндр, в котором может перемещаться поршень. Шток поршня при помощи троса связан с рулем самолета. Пространства внутри цилиндра по обе сгороны поршня сообщаются через распределительный золотник с масляной магистралью, в которой при помощи помпы поддерживается определенное давление. При перемещении распределительного золотника масло давит на одну из сторон поршня рулевой машинки и перемещает руль самолета в ту или другую сторону в зависимости от положения распределительного золотника.

Распределительный золотник жестко связан с пневматическим реле, выполненным в виде коробки с расположенной внутри нее эластичной мембраной. Правая и левая половины пневматического реле не соединяются друг с другом, но имеют самостоятельные выводы в виде двух трубок.

Если в одну из камер пневматического реле подать воздух под некоторым давлением, то эластичная мембрана переместит распределительный золотник и масло поступит в одну из половин цилиндра рулевой машинки. Перемещаясь внутри цилиндра, поршень переложит руль поворота самолета. Подавая давление в другую камеру пневматического реле, можно отклонить руль самолета в другую сторону.

Подача воздуха в правую или левую часть пневматического реле производится при помощи специального устройства, которое состоит из подводящего воздух коллектора с соплами и заслонки (см. фиг. 355, б). Воздух поступает к коллектору от помпы под постоянным давлением через трубку А. Внутри коллектора поток воздуха разветвляется на две части.

В прорезях коллектора может перемещаться дугообразная заслонка. Нормально заслонка устанавливается так, чтобы при нейтральном положении руля поворота сопла коллектора перекрывались поровну и примерно наполовину.

Если заслонка переместится относительно коллектора, то одно из сопел окажется перекрытым на большую величину, и в соответствующую камеру пневматического реле поступит меньшее давление. В результате движения мембраны распределительный золотник перепустит масло в соответствующую половину цилиндра рулевой машинки, которая переложит руль самолета.

Заслонка жестко скреплена с рамой, в которой находится гироскоп (ГПК), следовательно, эта заслонка будет так же устойчива в пространстве, как и ось гироскопа (см. фиг. 355, в).

Коллектор неподвижен по отношению к корпусу прибора, а следовательно, к самолету, и при отклонении самолета от курса, в результате срабатывания пневматического реле и золотников, руль поворота самолета будет перекладываться в нужном направлении.

Описанная схема является простейшим вариантом курсовой стабилизации летящего самолета и обладает весьма существенным недостатком.

Фиг. 356. Работа простейшего автомата курса.

На фиг. 356 изображен самолет, снабженный такой курсовой стабилизацией. Этот самолет летит по заданному курсу. Заслонка, связанная с гироскопом, отсекает одинаковое количество воздуха, выходящего из сопел коллектора. Мембрана пневматического реле, сцентрованный распределительный золотник, поршень рулевой машинки и руль поворота в этом случае находятся в нейтральном положении (см. фиг. 356, а).

Если самолет отклонится от первоначального курса, например вправо на некоторый угол (см. фиг. 356, б), то коллектор отклонится вместе с самолетом, а заслонка, связанная с гироскопом, сохранит свое положение в пространстве и, следовательно, изменит свое положение по отношению к коллектору. Давление воздуха будет больше в передней камере пневматического реле, и мембрана, прогнувшись, передвинет масляный золотник, который откроет доступ маслу в правую часть цилиндра рулевой машинки. Поршень рулевой машинки передвинется и отклонит руль поворота влево (см. фиг. 356, в).

Так как шток рулевой машинки и связанный с ним руль поворота заняли свое крайнее левое положение, то самолет будет разворачиваться влево с максимальном скоростью. В тот момент, когда самолет вновь выйдет на заданный курс, чувствительная часть (заслонка с гироскопом и коллектор), пневматическое реле и золотник вновь займут нейтральное положение. Но шток рулевой машинки так же, как и руль поворота, останутся в своём крайнем левом положении. Следовательно, самолет будет продолжать разворачиваться влево (фиг. 356, г).

После того как самолет займет положение левее нужного курса (см. фиг. 356, д), заслонка, связанная с гироскопом, перераспределит давление воздуха, поступающего в пневматическое реле. Мембрана прогнется вправо и передвинет золотник вправо. Руль поворота самолета пойдет обратно к нейтральному положению и, перейдя через него, переложится на правую сторону. Самолет будет разворачиваться вправо, перейдет через курс и т. д.

Процесс возвращения самолета к заданному первоначальному курсу будет повторяться полностью.

На фиг. 356, е изображен путь самолета, управляемого подобным стабилизатором курса; самолет совершает незатухающие колебания около заданного курса. Следует отметить, что в описанной схеме руль поворота самолета перекладывается на свой максимальный угол независимо от величины угла отклонения самолета от курса.

Описанная выше система непригодна для стабилизации полета самолета, так как она будет «разбалтывать» самолет вокруг заданного курса, или, как говорят, самолет будет рыскать по курсу.

   Пропорциональное регулирование и обратная связь. В нормальном полете летчик решает сам, в какую сторону нужно переложить руль, чтобы привести самолет к курсу. На основании опыта, знания своей машины и режима полета он определяет, на какой угол следует отклонить руль и сколько времени нужно держать его в отклоненном положении. Например, если самолет сбился с курса влево, то летчик нажимает на правую педаль управления рулем поворота соответственно имеющемуся отклонению, но не задерживает нажима до возвращения самолета на нужный курс, а несколько раньше отпускает правую педаль или даже слегка сдерживает слишком быстрый поворот самолета вокруг вертикальной оси, нажимая на левую педаль руля поворота. В противном случае самолет по инерции может сбиться направо и пойти по извилистому пути, рыская по курсу.

Следовательно, для работы автопилота требуется такое устройство, которое позволило бы ограничить величину перекладывания рулей в зависимости от отклонения самолета от курса, а затем прекращало бы свое действие и пи делало рабочий ход в обратную сторону. Подобное устройство выполнено в автопилоте в виде обратной связи от поршня рулевой машинки к подвижному коллектору.

При рассмотрении схемы работы автоматического пилота без обратной связи (см. выше) видно, что коллектор с соплами повторяет все движения самолета по отношению к заслонке, жестко связанной со стабилизированным в пространстве гироскопом.

В схеме автопилота с обратной связью заслонка также жестко связана с гироскопом, а коллектор при помощи обратной связи перемещается на величину, пропорциональную величине перекладывания руля самолета. В автопилоте АП-42 обратная связь выполнена в виде троса, связывающего шток рулевой машинки с коллектором.

Фиг. 357. Работа автомата курса с обратной связью.

Работа автомата курса с обратной связью. На фиг. 357, а изображен летящий по заданному курсу самолет, снабженный курсовой стабилизацией с обратной связью. Воздух поступает из коллектора в пневматическое реле равными струями. Мембрана пневматического реле, распределительный золотник и поршень рулевой машинки занимают нейтральное положение. Руль поворота самолета также расположен нейтрально, т. е. в плоскости симметрии самолета.

Если под действием внешних сил самолет отклонится вправо (см. фиг. 357, б), то заслонка останется в прежнем положении, а коллектор с соплами повернется относительно заслонки. Мембрана пневматического реле прогнется влево, переместит распределительный золотник и откроет доступ маслу в правую часть рулевой машинки. Поршень, перемещаясь в цилиндре рулевой машинки, переложит руль поворота влево и одновременно через трос и ролик обратной связи повернет коллектор в нейтральное положение (относительно заслонки).

В следующий момент (см. фиг. 357, в) пневматическое реле и распределительный золотник будут приведены в нейтральное положение. Рулевая машинка отклонила руль поворота самолета на угол β, пропорциональный углу отклонения самолета α. Самолет поворачивается влево.

Коллектор, поворачиваясь вместе с самолетом, выходит из нейтрального положения (относительно заслонки) и создает перепад давления в пневматическом реле, прогибая мембрану в сторону, противоположную первоначальному прогибу (см. фиг. 357, г). Золотник переложится в обратную сторону, и масло поступит в левую полость цилиндра рулевой машинки, возвращая поршень в нейтральное положение. Руль поворота также пойдет к своему нейтральному положению, а коллектор получит через обратную связь новое дополнительное перемещение, стремящееся вернуть его в нейтральное положение (относительно заслонки).

В результате самолет возвратится на курс в тот момент, когда заслонки, пневматическое реле, золотник, рулевая машинка и руль поворота будут занимать нейтральное положение (см. фиг. 357, д).

Из последовательного рассмотрения всех этапов траектории полета видно, что самолет, снабженный автопилотом с обратной связью, при отклонении от заданного курса будет совершать затухающие колебания (см. фиг. 357, е). Углы отклонения рулей будут пропорциональны углам отклонения самолета от курса.

Такой автопилот будет вполне пригоден для стабилизации полета самолета, несмотря на некоторые весьма существенные недостатки, к числу которых нужно отнести то, что он не учитывает инерции самолета.

Современные автопилоты учитывают не только угол отклонения от заданного направления, но и скорость этого отклонения и даже ускорение, испытываемое самолетом при отклонении от курса. При применении автопилота, работающего по современной схеме, отклонения от курса значительно уменьшаются, и самолет почти точно выдерживает прямую линию заданного курса.

Дата публикации на сайте: 2.12.2012

Обсудить на форуме

Форум

©AirPages
2003-