Aviation of WWII
Home   Custom Search
Manuals B-17 B-29 Pilot`s Notes

Your assignment to the B-17 airplane mean's that you are no longer just a pilot. You are now an airplane commander, charged with all the duties and responsibilities of a command post.

You are now flying a 10-man weapon. It is your airplane, and your crew. You are responsible for the safety and efficiency of the crew at all times—not just when you are flying and fighting, but for the full 24 hours of every day while you are in command.

Your crew is made up of specialists. Each man—whether he is the navigator, bombardier, engineer, radio operator, or one of the gunners —is an expert in his line. But how well he does his job, and how efficiently he plays his part as a member of your combat team, will depend to a great extent on how well you play your own part as the airplane commander.

Get to know each member of your crew as an individual. Know his personal idiosyncrasies, his capabilities, his shortcomings. Take a personal interest in his problems, his ambitions, his need for specific training.

See that your men are properly quartered, clothed, and fed. There will be many times, when your airplane and crew are away from the home base, when you may even have to carry your interest to the extent of financing them yourself. Remember always that you are the commanding officer of a miniature army—a specialized army; and that morale is one of the biggest problems for the commander of any army, large or small.

Crew Discipline

Your success as the airplane commander will depend in a large measure on the respect, confidence, and trust which the crew feels for you. It will depend also on how well you maintain crew discipline.

Your position commands obedience and respect. This does not mean that you have to be stiff-necked, overbearing, or aloof. Such characteristics most certainly will defeat your purpose.

Be friendly, understanding, but firm. Know your job; and, by the way you perform your duties daily, impress upon the crew that you do know your job. Keep close to your men, and let them realize that their interests are uppermost in your mind. Make fair decisions, after due consideration of all the facts involved; but make them in such a way as to impress upon your crew that your decisions are to stick.

Crew discipline is vitally important, but it need not be as difficult a problem as it sounds. Good discipline in an air crew breeds comradeship and high morale, and the combination is unbeatable.

You can be a good CO, and still be a regular guy. You can command respect from your men, and still be one of them.

"To associate discipline with informality, comradeship, a leveling of rank, and at times a shift in actual command away from the leader, may seem paradoxical," says a brigadier general, formerly a Group commander in the VIII Bomber Command. "Certainly, it isn't down the military groove. But it is discipline just the same—and the kind of discipline that brings success in the air."

Crew Training

Train your crew as a team. Keep abreast of their training. It won't be possible for you to follow each man's courses of instruction, but you can keep a close check on his record and progress.

Get to know each man's duties and problems. Know his job, and try to devise ways and means of helping him to perform it more efficiently.

Each crew member naturally feels great pride in the importance of his particular specialty. You can help him to develop his pride to include the manner in which he performs that duty. To do that you must possess and maintain a thorough knowledge of each man's job and the problems he has to deal with in the performance of his duties.

The copilot is the executive officer—your chief assistant, understudy, and strong right arm. He must be familiar enough with every one of your duties—both as pilot and as airplane commander—to be able to take over and act in your place at any time.

He must be able to fly the airplane under all conditions as well as you would fly it yourself.

He must be extremely proficient in engine operation, and know instinctively what to do to keep the airplane flying smoothly even though he is not handling the controls.

He must have a thorough knowledge of cruising control data, and know how to apply it at the proper time.

He is also the engineering officer aboard the airplane, and maintains a complete log of performance data.

He must be a qualified instrument pilot.

He must be able to fly good formation in any assigned position, day or night.

He must be qualified to navigate by day or at night by pilotage, dead reckoning, and by use of radio aids.

He must be proficient in the operation of all radio equipment located in the pilot's compartment.

In formation flying, he must be able to make engine adjustments almost automatically.

He must be prepared to take over on instruments when the formation is climbing through an overcast, thus enabling you to watch the rest of the formation.

Always remember that the copilot is a fully trained, rated pilot just like yourself. He is subordinate to you only by virtue of your position as the airplane commander. The B-17 is a lot of airplane; more airplane than any one pilot can handle alone over a long period of time. Therefore, you have been provided with a second pilot who will share the duties of flight operation.

Treat your copilot as a brother pilot. Remember that the more proficient he is as a pilot, the more efficiently he will be able to perform the duties of the vital post he holds as your second in command.

Be sure that he is allowed to do his share of the flying, in the pilot's seat, on takebffs, landings, and on instruments.

The importance of the copilot is eloquently testified by airplane commanders overseas. There have been many cases in which the pilot has been disabled or killed in flight and the copilot has taken full command of both airplane and crew, completed the mission, and returned safely to the home base. Usually, the copilots who have distinguished themselves under such conditions have been copilots who have been respected and trained by the airplane commander as pilots.

Bear in mind that the pilot in the right-hand seat of your airplane' is preparing himself for an airplane commander's post too. Allow him every chance to develop his ability and to profit by your experience.


The navigator's job is to direct your flight from departure to destination and return. He must know the exact position of the airplane at all times.

Navigation is the art of determining geographic positions by means of (a) pilotage, (b) dead reckoning, (c) radio, or (d) celestial navigation, or any combination of these 4 methods. By any one or combination of methods the navigator determines the position of the airplane in relation to the earth.


Pilotage is the method of determining the airplane's position by visual reference to the ground. The importance of accurate pilotage cannot be over-emphasized. In combat navigation, all bombing targets are approached by pilotage, and in many theaters the route is maintained by pilotage. This requires not merely the vicinity type, but pin-point pilotage. The exact position of the airplane must be known not within 5 miles but within 1/4 of a mile.

The navigator does this by constant reference to groundspeeds and ETA's established for points ahead, the ground, and to his maps and charts. During the mission, so long as he can maintain visual contact with the ground, the navigator can establish these pin-point positions so that the exact track of the airplane will be known when the mission is completed.

Dead Reckoning

Dead reckoning is the basis of all other types of navigation. For instance, if the navigator is doing pilotage and computes ETA's for points ahead, he is using dead reckoning.

Dead reckoning determines the position of the airplane at any given time by keeping an account of the track and distance flown over the earth's surface from the point of departure or the last known position.

Dead reckoning can be subdivided into two

1. Dead reckoning as a result of a series of known positions obtained by some other means of navigation.

For example, you, as pilot, start on a mission from London to Berlin at 25,000 feet. For the first hour your navigator keeps track by pilotage; at the same time recording the heading and airspeed which you are holding. According to plan, at the end of the first hour the airplane goes above the clouds, thus losing contact with the ground. By means of dead reckoning from his last pilotage point, the navigator is able to tell the position of the aircraft at any time. The first hour's travel has given him the wind prevalent at altitude, and the track and groundspeed being made. By computing track and distance from the last pilotage point, he can always tell the position of the airplane. When your airplane comes out of the clouds near Berlin, the navigator will have a very close approximation of his exact position, and will be able to pick up pilotage points quickly.

2. Dead reckoning as a result of visual references other than pilotage.

When flying over water, desert, or barren land, where no reliable pilotage points are available, accurate DR navigation still can be performed. By means of the drift meter the navigator is able to determine drift, the angle between the heading of the airplane and its track over the ground. The true heading of the airplane is obtained by application of compass error to the compass reading. The true heading plus or minus the drift (as read on the drift meter) gives the track of the airplane. At a constant airspeed, drift on 2 or more headings will give the navigator information necessary to obtain the wind by use of his computer. Groundspeed is computed easily once the wind, heading, and airspeed are known. So, by constant recording of true heading, true airspeed, drift, and groundspeed, the navigator is able to determine accurately the position of the airplane at any given time. For greatest accuracy, the pilot must maintain constant courses and airspeeds. If course or airspeed is changed, notify the navigator so he can record these changes.


Radio navigation makes use of various radio aids to determine position. The development of many new radio devices has increased the use of radio in combat zones. However, the ease with which radio aids can be jammed, or bent, limits the use of radio to that of a check on DR and pilotage. The navigator, in conjunction with the radio man, is responsible for all radio procedures, approaches, etc., that are in effect in the theater.


Celestial navigation is the science of determining position by reference to 2 or more celestial bodies. The navigator uses a sextant, accurate time, and many tables to obtain what he calls a line of position. Actually this line is part of a circle on which the altitude of the particular body is constant for that instant of time. An intersection of 2 or more of these lines gives the navigator a fix. These fixes can be relied on as being accurate within approximately 10 miles. One reason for inaccuracy is the instability of the airplane as it moves through space, causing acceleration of the sextant bubble (a level denoting the horizontal). Because of this acceleration, the navigator takes observations over a period of time so that the acceleration error will cancel out to some extent. If the navigator tells the pilot when he wishes to take an observation, extremely careful flying on the part of the pilot during the few minutes it takes to make the observation will result in much greater accuracy. Generally speaking, the only celestial navigation used by a combat crew is during the delivering flight to the theater. But in all cases celestial navigation is used as a check on dead reckoning and pilotage except where celestial is the only method available, such as on long over-water flights, etc.

Instrument Calibration

Instrument calibration is an important duty of the navigator. All navigation depends directly on the accuracy of his instruments. Correct calibration requires close cooperation and extremely careful flying by the pilot. Instruments to be calibrated include the altimeter, all compasses, airspeed indicators, alignment of the astrocompass, astrograph, and drift meter, and check on the navigator's sextant and watch.

Pilot-Navigator Preflight Planning

1. Pilot and navigator must study flight plan of the route to be flown and select alternate airfields.

2. Study the weather with the navigator. Know what weather you are likely to encounter. Decide what action is to be taken. Know the weather conditions at the alternate airfields.

3. Inform your navigator at what airspeed and altitude you wish to fly so that he can prepare his flight plan.

4. Learn what type of navigation the navigator intends to use: pilotage, dead reckoning, radio, celestial, or a combination of all methods.

5. Determine check points; plan to make radio fixes.

6. Work out an effective communication method with your navigator to be used in flight.

7. Synchronize your watch with your navigator's.

Pilot-Navigator in Flight

1. Constant course—For accurate navigation, the pilot—you—must fly a constant course. The navigator has many computations and entries to make in his log. Constantly changing course makes his job more difficult. A good navigator is supposed to be able to follow the pilot, but he cannot be taking compass readings all the time.

2. Constant airspeed must be held as nearly as possible. This is as important to the navigator as is a constant course in determining position.

3. Precision flying by the pilot greatly affects the accuracy of the navigator's instrument readings, particularly celestial readings. A slight error in celestial reading can cause considerable error in determining positions. You can help the navigator by providing as steady a platform as possible from which he can take readings. The navigator should notify you when he intends to take readings so that the airplane can be leveled off and flown as smoothly as possible, preferably by using the automatic pilot.

Do not allow your navigator to be disturbed while he is taking celestial readings.

4. Notify the navigator of any change in flight, such as change in altitude, course, or airspeed. If change in flight plan is to be made, consult the navigator. Talk over the proposed change so that he can plan the flight and advise you about it.

5. If there is doubt about the position of the airplane, pilot and navigator should get together, refer to the navigator's flight log, talk the problem over and decide together the best course of action to take.

6. Check your compasses at intervals with those of the navigator, noting any deviation.

7. Require your navigator to give position reports at intervals.

8. You are ultimately responsible for getting the airplane to its destination. Therefore, it is your duty to know your position at all times.

9. Encourage your navigator to use as many navigation methods as possible as a means of double-checking.

Post-flight Critique

After every flight, get together with the navigator and discuss the flight and compare notes. Go over the navigator's log. If there have been serious navigational errors, discuss them with the navigator and determine their cause. If the navigator has been at fault, caution him that it is his job to see that the same mistake does not occur again. If the error has been caused by faulty instruments, see that they are corrected before another navigation mission is attempted. If your flying has contributed to inaccuracy in navigation, try to fly a better course next time.

Miscellaneous Duties

The navigator's primary duty is navigating your airplane with a high degree of accuracy. But as a member of the team, he must also have a general knowledge of the entire operation of the airplane.

He has a ,50-cal. machine gun at his station, and he must be able to use it skillfully and to

He must be familiar with the oxygen system, know how to operate the turrets, radio equipment, and fuel transfer system.

He must know the location of all fuses and spare fuses, lights and spare lights, affecting

He must be familiar with emergency procedures, such as the manual operation of landing gear, bomb bay doors, and flaps, and the proper procedures for crash landings, ditching, bailout, etc.